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1
MULTIMODAL IMAGE RECONSTRUCTION
WITH ZONAL SMOOTHING

CROSS-REFERENCE TO RELATED
APPLICATION

This application claims the benefit of priority under 35
U.S.C. §119(e) of U.S. Provisional Patent Application Ser.
No. 61/081,121, filed on Jul. 16, 2008.

TECHNICAL FIELD

This invention relates to image reconstruction, and in par-
ticular, to image reconstruction in medical imaging.

BACKGROUND

Medical imaging of metabolic and biochemical activity
within a patient is known as functional imaging. Functional
imaging techniques include, for example, nuclear imaging
such as Positron Emission Tomography (PET), Single Photon
Computed Tomography (SPECT), functional magnetic reso-
nance imaging (fMRI), and functional computed tomography
(fCT). The reconstruction of a functional image from data
acquired by functional imaging is often difficult because the
data is often characterized by a small signal rates and small
low signal-to-noise ratio. For nuclear imaging, for example,
the count rate is limited by the amount of a radioactive sub-
stance that can be administered without harming the patient.

In addition, a functional image does not necessarily pro-
vide structural information. Thus, one evaluates a functional
image often with the help of a structural image.

An overview of SPECT, PET systems, their combination
with computer tomography (CT) systems as well as iterative
image reconstruction for emission tomography is given in
chapter 7, chapter 11, and chapter 21 of M. Wernick and J.
Aarsvold, “Emission tomography: the fundamentals of PET
and SPECT,” Elsevier Academic Press, 2004, the contents of
which are herein incorporated by reference.

An overview of different reconstruction methods is given
inR. C. Puetteretal., “Digital Image Reconstruction: Deblur-
ring and Denoising,” Annu. Rev. Astro. Astrophys., 2005, 43:
139-194, the contents of which are herein incorporated by
reference.

SUMMARY

The invention is based in part on the recognition that one
can reconstruct a functional image of an examined object by
considering the spatio-temporal structure of the object when
approximating the functional image according to the acquired
functional data. Specifically the spatio-temporal structure of
the object allows separating the object into multiple zones.
The volume within each of those zones is treated equally in
the reconstruction, but the treatment can be different for dif-
ferent zones. One aspect of treating the different zones dif-
ferent is that one can allocate different amounts of signal to
the zones according to the zone’s contribution to the func-
tional feature observed.

Multimodal imaging provides, in addition to the functional
image data, the possibility to acquire information about the
spatio-temporal structure of the examined object. This infor-
mation (in the following also referred to as supplemental
information) can include anatomical information about the
imaged tissue (e.g., geometry and type), the movement of the
tissue (breathing, cardiac movement), the temporal behavior
of the contrast agent/radioactive substance (flow, absorption,

10
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2

half-life). For example, high resolution imaging such as CT
imaging and magnetic resonance (MR) imaging can provide
precise anatomical information about the examined object.
For example, one can manually assign each organ to its own
zone. Automated assigning of zones can be based, for
example, on the absorption coefficients provided by CT imag-
ing and/or on automated segmentation of CT and/or MR
image data into different tissue types.

When reconstructing an image object based on the func-
tional image data and the support information (multimodal
image reconstruction), the contributions of the zones to the
reconstructed image object can be optimized during the
reconstruction and/or pre-assigned based on the supplemen-
tal information. Moreover, during the reconstruction smooth-
ing operations can be performed zone-specific. For example,
pixon smoothing can be restricted to a zone and pixon kernel
functions can be adapted to the geometry of a zone.

Multimodal reconstruction differs from maximum a pos-
teriori (MAP) reconstruction using an anatomical prior, as
described for example, in chapter 21 of M. Wernick and J.
Aarsvold, “Emission tomography: the fundamentals of PET
and SPECT,” and B. M. W. Tsui et al., “Quantitative cardiac
SPECT reconstruction with reduced image degradation due
to patient anatomy,” IEEE Trans. Nuc. Sci., 41, 2838-44,
1994. The MAP technique is a constrained reconstruction,
which adds an anatomical penalty term (e.g., the anatomical
prior) to the log-likelihood merit function. The MAP recon-
struction is therefore a compromise between the log-likeli-
hood merit function based on the data and the anatomical
prior.

In contrast, multimodal reconstruction may imposes a
separation in anatomical zones of the reconstructed image
object but the zones do not modify the merit function of the
applied reconstruction algorithm

In one aspect, the invention features computer-imple-
mented methods of reconstructing an image object for a mea-
sured object in object space from image data in data space that
include causing a computer system to execute instructions for
providing zonal information separating the object space into
at least two zones, providing at least two zonal image objects,
each zonal image object being associated with one of the at
least two zones, performing a zonal smoothing operation on
at least one of the zonal image objects, thereby generating at
least one smoothed zonal image object, reconstructing the
image object on the basis of the at least one smoothed zonal
image object, and outputting the image object.

In another aspect, computer-implemented methods for
multimodal imaging of an examined object include causing a
computer system to execute instructions for performing a
support imaging operation to generate support information
associated with the examined object, identifying at least two
zones in object space based on the support information, per-
forming functional imaging of the examined object, thereby
generating functional image data, reconstructing an image
object from the functional image data, wherein reconstruct-
ing includes performing a zonal smoothing operation within
at least one of the two zones, and outputting the reconstructed
image object.

In another aspect, functional imaging devices include a
detector unit for detecting a functional signal emitted from a
measured object within a detecting area and providing func-
tional image data in a data space indicative of the functional
signal, and a reconstruction unit for reconstructing, from the
functional image data, an image object in object space, the
reconstructing unit being configured to provide zonal infor-
mation separating the object space into at least two zones,
provide at least two zonal image objects, each zonal image
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object being associated with one of the at least two zones,
perform a zonal smoothing operation on at least one of the
zonal image objects, thereby generating at least one smoothed
zonal image object, reconstruct the image object on the basis
of'the at least one smoothed zonal image object, and provide
the image object at an output of the reconstruction unit.

Implementations may include one or more of the following
features.

In some embodiments, the zonal smoothing operation can
be selected from the group consisting of a smoothing opera-
tion based on pixon smoothing, a smoothing operation based
on Fourier filtering, a smoothing operation based on wavelet
filtering, a smoothing operation based on filtering with a
Wiener filter, and a smoothing operation based on filtering
with a fixed filter.

Performing the zonal smoothing operation can include pro-
viding a zonal smoothing map of zone-specific information
about the smoothing within a zone. Performing the zonal
smoothing operation can further include generating the zonal
smoothing map using the zonal information. The zonal
smoothing map can be a pixon map providing zone-specific
pixon kernel functions Kaﬁ(n)'

In some embodiments, performing a zonal smoothing can
include pixon smoothing each of the zonal image objects
separately using zone-specific kernel functions Kaﬁ("). Pixon
smoothing can include calculating a smoothed image object
for a zone n according to

la.pixon = Z Foe )It(::;ixona
.

where the pixon smoothed zonal image object Ia,pixon(”) is
determined by the zone-specific kernel functions Kaﬁ(n) and

the zone-functions 7, according to

i

a-pixon

- E KBS | 3 K.
B

B

In some embodiments, providing zonal information can
include receiving support information about the measured
object, and deriving the zonal information from the support
information. The support information can be at least one of a
computer tomography image and a nuclear magnetic reso-
nance image of the measured object.

To provide a spatio-temporal area within the object space,
providing the zonal information can include grouping object
points of the object space into at least two zones based on at
least one of a common anatomical feature, a common appli-
cation specific feature, a common disease specific feature,
and a common biomarker specific feature of the object points.

Providing the zonal information can include determining a
zone-function relating object points of the object space to a
zone. Values of the zone-function can correspond to an extent
of an affiliation with the zone. A zone can be defined based on
values of an attenuation map derived from a computer tomo-
graphic image of the examined object.

In some embodiments, the method can further include
causing the computer system to execute instructions for per-
forming a reconstruction of the image object based on the
smoothed zonal image object. Performing the reconstruction
can include for each iteration, in a series of iterations, per-
forming a forward projection of the at least one smoothed
zonal image object, thereby generating at least one zonal data
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model in data space, determining a data model using the at
least one zonal data model as a contribution of the respective
zones to the data model, determining an update object in
object space using the data model and the image data, updat-
ing the at least one smoothed zonal image object with the
update object, thereby generating at least one updated zonal
image object, and following a last iteration, determining the
image object from the at least one updated zonal image object
of one of the iterations.

Performing the forward projection can generate contribu-
tions to the data model from the at least one zonal image
object only for those object points that are affiliated with the
respective zone.

Performing the reconstruction can include assigning a scal-
ing factor to each zone, and optimizing the scaling factor
during the reconstruction.

Performing the reconstruction can include deriving zonal
scaling factors from a renormalization operation.

Performing the reconstruction can include an update
operation based on an algorithm selected from the group
consisting of a maximum-likelihood expectation-maximiza-
tion algorithm, an ordered-subset expectation-maximization
algorithm, a non-negative least-squares algorithm, and a con-
jugate-gradient minimization algorithm, a maximum a pos-
teriori reconstruction algorithm, and a Bayesian reconstruc-
tion algorithm.

In some embodiments, the zonal smoothing operation can
be selected from the group consisting of a smoothing opera-
tion based on pixon smoothing, a smoothing operation based
on Fourier filtering, a smoothing operation based on wavelet
filtering, a smoothing operation based on filtering with a
Wiener filter, and a smoothing operation based on filtering
with a fixed filter.

In some embodiments, the functional imaging device can
further include a support imaging device for deriving support
information about the measured object, and wherein the
reconstruction unit can further be configured to receive the
support information from the support imaging device.

The details of one or more embodiments of the invention
are set forth in the accompanying drawings and the descrip-
tion below. Other features, objects, and advantages of the
invention will be apparent from the description and drawings,
and from the claims.

DESCRIPTION OF DRAWINGS

FIG. 1 is a schematic overview of a multimodal imaging
system.

FIG. 2 is a simplified flowchart of a multimodal image
reconstruction.

FIG. 3 is a simplified conventional functional image.

FIG. 4 is a simplified CT image.

FIG. 5 is a simplified multimodal reconstructed functional
image.

FIG. 6A is a CT scan of a phantom.

FIG. 6B is a histogram of absorption coefficients of the CT
scan of the phantom.

FIG. 7 is a side-by-side presentation of a multimodal
reconstructed image and a Flash 3D reconstructed image of
the phantom of FIG. 6A.

FIG. 8 is a zone planning view based on a CT scan of the
upper body of a patient.

FIG. 9 is a side-by-side presentation of a multimodal
reconstructed image and a Flash 3D reconstructed image of
the upper body of FIG. 8.

FIG. 10 is a flowchart illustrating multimodal reconstruc-
tion with and without zonal smoothing.
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FIG. 11 is a flowchart illustrating a multimodal reconstruc-
tion algorithm for an object space separated in multiple zones.

FIG. 12 is a flowchart illustrating an example of a forward
projection as used in the multimodal reconstruction of FIG.
11.

FIG. 13 is a flowchart illustrating renormalization as used
in the multimodal reconstruction of FIG. 11.

FIG. 14 is a flowchart illustrating a zonal OSEM recon-
struction algorithm.

FIG. 15 is a flowchart illustrating a single zonal OSEM
update operation as used in the algorithm of FIG. 14.

FIG. 16 is a flowchart illustrating a zonal NNLS algorithm.

FIG. 17 is a flowchart illustrating zonal smoothing.

FIG. 18 is a flowchart illustrating zonal pixon smoothing.

Like reference symbols in the various drawings indicate
like elements.

DETAILED DESCRIPTION

FIG. 1 shows a multimodal reconstruction unit 1 with an
input device 2 and a display unit 3. The reconstruction unit 1
receives information (e.g., measured data of an examined area
of a patient) from two data sources, a functional imaging
system 4 and a source of support information 5 (hereinafter
also referred to as a support imaging system or support
modality), and reconstructs an image object that reproduces
functional features of the examined area. Examples of a
source for support information include a computed tomogra-
phy (CT) system, e.g. a transmission CT system and an MR
imaging system

Referring to FIG. 2, the functional imaging system 4 mea-
sures image data D of a functional process in the patient’s
body by using, e.g., nuclear properties of matter. Examples of
such imaging techniques include nuclear imaging such as
SPECT and PET. For these types of nuclear imaging, one
administers a radioactive substance, usually a disease specific
biomarker, to the patient and detects emitted radiation with a
detector system, e.g., with a ring detector for PET or with one
or several gamma cameras for SPECT. In general, the detector
system of the functional imaging system 4 provides func-
tional data, e.g., raw data or preprocessed data to the multi-
modality reconstruction unit 1.

As shown in FIG. 2, the multimodality reconstruction unit
1 performs a multimodal reconstruction R. The multimodal
reconstruction can use a system matrix H to describe the
properties of the functional imaging system 4 to iteratively
improve a data model of an image object I representing the
functional image data D. The image object I can then be
displayed on the display 3, e.g., using well-known volume
rendering techniques.

The image object I, which is defined in an object space, is
a reconstruction of the functional image data D measured in a
data space. The object space is the space in which the result of
the image reconstruction is defined and which corresponds,
for example, to the 3D volume (field-of-view or “FOV”) that
was imaged using the functional imaging system 4.

Zonal information, i.e., information about zones within the
examined object, can be derived from support information S.
In some embodiments, the multimodal reconstruction R can
improve the image quality and/or reduce the acquisition time
of the functional imaging process by considering the zonal
information in the reconstruction.

The support information is, for example, measured with
the support modality 5. Examples of support information
include anatomical information about the examined object
(shape, volume, thickness, density of tissue types), type of
disease and other disease specific features (density change
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within tissue (e.g. bone tissue), calcification), type of appli-
cation and other application specific features used to generate
the image data (time dependence, easily identifiable regions
of lower interest but high signal (e.g. accumulation of a biom-
arker in the bladder)), and biomarker specific features (phar-
macokinetic features, tissue types to which biomarkers
attach, time scale of processes; one, two, or more biomark-
ers). The zonal information can be derived by automated or
manual analysis of the support information and correspond to
a separation of the object space in two or more space, usually
including Null zone surrounding the examined object.

FIG. 3 illustrates how a functional (e.g., nuclear) image 30,
e.g. of abone, may resultin less resolved distribution 31 of the
functional activity density associated with a functional pro-
cess. Conversely, a CT scan, while generally insensitive to
functional processes, provides considerable anatomical
information. For example, in FIG. 4, a CT scan provides an
anatomical image 40 that clearly resolves the shape of a bone
41.

In conventional functional imaging, functional and ana-
tomical images are reconstructed separately and are only
presented together (e.g. as overlaying images) to the diagnos-
ing physician. However, the resolution and image quality of
the functional and anatomical images is determined by the
respective reconstruction algorithms associated with the
functional and anatomical imaging techniques. Sometimes,
nuclear imaging techniques use an attenuation map (also
referred to as p-map) derived from a CT scan to compensate
for signal loss within the examined object.

In contrast, the multimodal reconstruction R described
herein uses zonal information derived from the support infor-
mation S generated by a second modality. The support infor-
mation S can provide structural information about the mea-
sured object such that the object space can be divided in
multiple zones. For each such zone, one can constrain the
reconstruction of the image object by using a zonal image
object. Each of the zonal image objects can be treated differ-
ently in the reconstruction but the zonal image objects are
used together to, for example, generate a data model of the
reconstructed image objectI. A zone-specific operation is, for
example, a smoothing operation that is performed on indi-
vidual zonal image objects.

Support information S can further relate to the energy and
event time of the detected photons. Thus, a zone can also be
based on those parameters. For example, a 4D zone considers
temporal changes of the position and/or shape of a zone,
which can be caused be any kind of movement of the object
(e.g., breathing and heart activity). Accordingly, the object
space can include additional (non-geometric) dimensions
when appropriate.

Referring to FIG. 5, a multimodal reconstructed image 50
can show functional activity 51 with increased anatomical
accuracy. Thus, multimodal reconstruction can use the
anatomy of the examined object when reconstructing the
functional image object. In an example, multimodal recon-
struction uses the distribution of a target tissue of a biomarker
(e.g., a specific organ or a bone) when reconstructing the
functional density of that biomarker that primarily accumu-
lates within that target tissue.

In multimodal reconstruction, the resolution of the support
information can affect the resolution of the functional image
object and the sensitivity of the functional process. Within a
zone, the functional resolution and sensitivity may prevail.
For example, along the extension of the bone shown in FI1G. 5,
the resolution is governed by the functional modality, e.g., by
SPECT and PET. However, across a zone, e.g., atthe interface
of the bone with surrounding tissue, the resolution may be
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improved to that obtained using the support modality, e.g., to
the high resolution of a CT system.

Thus, multimodal reconstruction can allow quantitative
functional imaging of a predetermined zone. One example of
such a predetermined zone is a zone selected to encompass
one or more anatomical structures.

Zonal Information

In general, a zone includes object points with similar fea-
tures. A zone need not be an enclosed area, and can in fact
consist of multiple disjoint areas. One zone usually will be a
zone representing a target organ or target tissue of the biom-
arker used for the functional image. The area of the object
space that surrounds the examined object is usually referred
to as a Null zone and does not contribute to the functional
signal.

The segmentation of the examined object into zones can be
automated or user-defined. The segmentation of the object
into zones is based on support information derived, e.g., from
CT images and/or nuclear magnetic resonance images, such
as a p-map (CT), p-Z map (contrast or dual-source CT). In
general, CT-images and MR-images can provide information
about the anatomy. For example, a CT image can provide
support anatomical information of the object space based on
the measured absorption of the imaging radiation. In particu-
lar, support information can include the absorption coeffi-
cients (u-values) of the measured object and information
about one or more intervals of the absorption coefficients
[0 W] that are specific for a tissue type or organ. Similar
absorption coefficients (pi-values) derived from a CT scan can
be used to determine zones. The information about how the
object space is separated into zones is referred to as zonal
information.

FIGS. 6A, 6B, and 7 illustrate the concept of zonal sepa-
ration for a 3D Hoffman brain phantom in a cylindrical cham-
ber. A CT image 60 of a Hoffman brain phantom is shown in
FIG. 6A. The Hoffman brain phantom consists of plastic 62
representing brain tissue surrounded by water 64. Each object
point of the CT image 60 is characterized by an attenuation
coefficient (also referred to as p-value of that object pointing).
FIG. 6B shows a histogram plot of attenuation coefficients
derived from the CT-images 60 of the Hoffman brain phan-
tom. The histogram shows two peaks of the p-values. One
peak 72, which corresponds to the plastic material 62 of the
Hoffiman phantom, is at a p-value of about 0.172 cm™, the
other peak 74, which corresponds to the water 64 in the
Hoffiman brain phantom, is at a p-value of about 0.155 cm™.
Accordingly, one could assign each object point within the
Hoffman phantom to one of'the two zones, i.e., the water-zone
or the plastic-zone. For the phantom, the water-zone can be
defined by p-values in the range from 0.144 cm™! to 0.162
cm™’. In general the limiting p-values depend for nuclear
imaging, for example, on the biology, chemistry, and physics
of'the biomarker. In addition to the water-zone and the plastic-
zone, one can assign the objects points surrounding the Hoft-
man phantom to a Null zone 66.

An example of a multimodal reconstructed functional
image in comparison with a conventional reconstruction is
shown in FIG. 7. Image 76 is a conventionally reconstructed
image of'the Hoffman brain phantom shown in FIG. 6 A using
Flash 3D reconstruction, while image 78 is a multimodal
reconstruction based on the same image data. The multimodal
reconstruction used the zonal information about the distribu-
tion of the plastic and the water derived from the CT-image
60, i.c., the spatial form of the plastic-zone and the water-
zone, and shows an increased image quality.

FIGS. 8 and 9 illustrate automated separation of an upper
body in multiple zones based on the determined absorption
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coefficients of a CT scan. The zone planning view of FIG. 8
includes a coronal view, a sagittal view, and a transverse view
of various zones that have been assigned with different grey
scale values. Based on the CT scan data of the upper body, the
absorption coefficients are provided as a histogram 80, in
which the absorption coefficients are given in Hounsfield
Units HU.

Essentially, three zones are assigned: fatted tissue (zone I)
from -250 HU to -30 HU, muscular tissue (zone 1) -30 HU
to +30 HU with a linearly decreasing ramp from +30 HU to
+95 HU, and bone tissue. The bone tissue is further separated
in three sub-zones: softer bone tissue (zone I11a) from +95 HU
to +160 HU with a linearly increasing ramp from +30 HU to
+95 HU; harder bone tissues (zone IIIb) from +160 HU to
+250HU, and harder bone tissues (zone Illc) above +250 HU.
The border values of the zones as well as the ramp shapes are
manually chosen and can be readjusted if appropriate. In
general, those values can be assigned for each scan, for
example, in dependence of the tissue types of interest, the
radioactive substance, and the type of functional imaging.

Inthe transverse view, fatted tissue of zone I is pointed out.
Zone 1 shows in general a homogenously identified spatial
structure. In contrast, the muscular tissue of zone II and the
soft bone tissue of zone Illa form spatially not clearly sepa-
rated areas as shown in the coronal view. The similar absorp-
tion coefficient of those tissue types result in a fast spatial
variation with regard to the affiliation of neighboring object
points to different zones. Clarifying manually or, e.g., pro-
viding additional supplemental information from an MR scan
or from the functional imaging itself can generate more
homogeneously shaped spatial zone structures. The to some
extent artificial separation into three bone zones can be done,
for example, when adapting zones to a radioactive substance
accumulating at a specific type of bone tissue. Such a zoning
may result in a complex zonal structure it can be seen by the
zones 1lla to Illc as shown in the sagittal view of FIG. 8.

A similar segmentation into zones can be performed based
on a measured MR image, which can provide high contrast
information for soft tissue.

In addition to the automated segmentation in different
zones, one can manually assign zones to specifically known
areas of interest (e.g., specific zoning of lymph nodes) or to
exclude signal from an area (e.g., the bladder). The latter is
illustrated as an example by a manually assigned bladder zone
82 in the sagittal view, which may allow excluding large
amounts of signal if the radioactive substance accumulates in
the bladder.

To summarize, by identifying features of the examined
object, one can generate zonal information, which separates
the object space into zones. The zonal information can in
general be derived from supplemental performed medical
imaging. In addition, information from the functional imag-
ing process itself can be used when separating the object
space into zones. For example, one can introduce the addi-
tional condition that an intensity value of a preliminary recon-
structed functional image is fulfilled at an object point or over
a group of object points to additionally distinguish tissue with
similar absorption coefficients but with different affinity to a
radioactive substance.

The zonal information can be provided as a zone-function
z(r). The zone-function can be a pure functional presentation,
indicating position(s) and shape(s) in object space. Another
presentation of a zone-function can be an object defined in the
dimensions of the object space that as an entry for an object
point includes the degree of affiliation of that object point to
the respective zone. The definition of zone-functions as an
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object in object space allows projecting the zone (here the
zone-function) onto any object by matrix multiplication.

Another comparison of reconstructed functional images
from multimodal reconstruction and conventional recon-
struction is shown in FIG. 9. Functional image 84 is a multi-
modal reconstructed image of the upper body, for which the
separation into zones was discussed before in connection
with FIG. 8. Functional image 86 is a reconstruction based on
the same image data using Flash 3D reconstruction. The
multimodal reconstructed functional image 84 shows an
increased image quality and identifies, for example, structural
features, such as the decreased signal area 88, that are not
resolved in the Flash 3D functional image 86.

Zonal Image Object

Based on the zonal-information, one can prepare zonal
image objects. Only the object points within the zone corre-
sponding to the zonal image object contribute to the recon-
struction of the image object. During the reconstruction, the
values of object points outside the zone do not contribute to
the reconstruction of the zonal image object. Such values are
constrained to be zero because one assumes that those object
points do not generate any detected signal.

As an example for restricting the contribution of the zonal
image object to its zone, one can define a zone-function z(r)
that assigns values greater than zero to all object points at
least partly affiliated with the respective zone. For example, in
an object representing the zone-function, one can assign the
value 1 to object points having a p-value within a predefined
range of L-values and a value of 0 to object points outside that
range. To allow a smooth transition between zones, the zone-
function can have values between 0 and 1 for border object
points. For example, one can assign a ramp of width oy at a
limiting p-value in which the zone-function reduces from the
value of 1 to the value O.

Multiplication of any object in object space with a zone-
function restricts the entries of the object to be non-zero only
at object points that are affiliated with the respective zone. In
case that during the reconstruction also object points outside
the zone get assigned with non-zero values, a repeated mul-
tiplication with the zone-function may become necessary to
set those values to O.

The separation of the object space in multiple zones can be
appropriate if, for example, a radioactive substance is known
to accumulate in different tissue types with a different density,
or when different biomarkers attach to different organs. In
such cases, one can separate the object space considering the
various tissue types.

The generation of zonal information from the support
information (e.g., CT- or MR images) is performed by first
identifying features of the examined object that relate to the
functional measurement and then identifying the object
points having the respective feature. In general, the areas
defined by the zones abut each other. However, as discussed
before one can allow smooth transitions between zones.

Mathematical Treatment of Zonal Image Objects

To consider multiple zones (e.g. N zones) in a mathemati-
cal description, one can define an image object I, giving the
functional activity density of the complete object space is a
sum over N zonal image objects %, (n=0, . .., N-1), each
representing a functional image of a zone, wherein each zonal
image object % is multiplied by a respective structural
zone-function z_*”
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As mentioned above, the zone-function can be purely spa-
tial and define the geometry of a zone in three spatial dimen-
sions. However, the zone-function can also be spatio-tempo-
ral. In general, the index o can stand for all variables that
characterize the functional activity. For example, in nuclear
imaging, o can stand for the spatial coordinates of an object
point, the time at which a photon has been detected, and the
energy of the detected photon. a is usually discretized into 3D
voxels and time and energy bins. Often, one refers to «
generically as a “voxel,” although it can have additional time
and energy components.

The functional zonal image objects ) " are to be deter-
mined from the multimodal reconstruction such that each
zonal image object 1" represents the functional activity in
the respective zone as well as possible. The structural zone-
functions z,%”, on the other hand, are predetermined from the
support modality 5 and are generally not modified in the
reconstruction. The zone-functions z,* designate the posi-
tion and form of the zones (as functions of time and energy)
and satisfy the condition

Zzg”Sl Y a.

n

Most voxels belong to no more than one zone. So for most
object points o, z,“’=1 for some n, and all other zone-func-
tions vanish, z_,**"=0. As zones can overlap, border voxels
in the area of overlap between zones may be attributed to
more than one zone, so there can be several values of n for
which z,%<1. Zones can also taper off gradually at the edges
of the examined object or at an interface with an implant,
which like the outside of the patient does not have any func-
tional activity and can like the outside be considered as a Null
zone. For border voxels that overlap with a Null zone, the
contribution of a voxel can be less than 1, i.e., the sum

Zzg” =<1

n

can be less than 1.
Co-Registration

A special registration between the support information and
the object space of the nuclear measurement is required to
accurately assign the object points in the object space of the
functional imaging device 3 to their respective zone(s). The
registration can be performed with a pre-reconstruction of the
functional measurement and/or based on a known or prede-
termined geometrical relation between the FOV of the func-
tional imaging device 3 and the source of support information
4. As an example for a structural image object, an anatomical
CT image (and thereby, the attenuation map for the determi-
nation of the zones) can be co-registered with a preliminarily
reconstructed functional image object. The co-registration of
the structural and functional image object can be performed
in a manner similar to the co-registration used for overlaying
the separately reconstructed functional and structural images
described above for the conventional analysis of functional
images.
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Multizone Reconstruction

In general, the reconstruction is performed using the signal
associated to a zone as an additional parameter, e.g., an addi-
tional constraint, while the spatio-temporal structure of the
zones is preserved. Methods to provide zone-specific con-
straints include performing specific measurements, estimat-
ing the constraints based on imaging data, or providing pre-
determined constraints in a medical database, which contains
information about the constraint, e.g., for various diseases,
radioactive materials, biomarkers, and patient parameters
such as age, sex, height, and weight. In nuclear imaging,
predetermined uptake expected for a zone (herein also
referred to as fractions) can also be used as a constraint for the
zones.

To measure the zone-specific constraints, one can perform
an unconstrained pre-reconstruction of the image data and
determine, thereby, e.g., the fractions directly from the
uptakes measured in a zone. Determining the fractions from
the image data is less susceptible to deviants than reading
values from a database that may not always be appropriate for
the current nuclear measurement. However, the values for the
fractions of the uptake depend on the quality of the pre-
reconstruction and an error in the constraints may propagate
into the multimodal reconstruction.

Another method of determining constraints includes
assigning to each zone a value c,, constant for all object points
and performing an optimization process based on a merit
function (such as Poisson maximum-likelihood, Mighell’s
modified chi-square gamma) that optimizes the coefficients
c, that represent the constraint (e.g. the relative uptake). This
optimization is referred to herein as renormalization and is
described below in detail.

High Resolution Reconstruction

The zonal reconstruction allows one to transfer the benefits
of high-resolution of structural imaging technique to func-
tional imaging techniques, thereby increasing, for example,
the resolution of the functional images. In addition or alter-
natively to the increased resolution, one may be able to per-
form functional imaging with lower signal. For nuclear imag-
ing, this can allow imaging with lower count rates with the
benefit of a lower radiation dose for the patient. Similarly, in
fMRI the amount of administered contrast agent may be
reduced.

Exemplary Algorithms for Multimodal Reconstruction

FIGS. 10-19 show additional flowcharts of unizone and
multizone multimodal algorithms.

Referring to FIG. 10, a multimodal reconstruction can,
exemplary for nuclear imaging, include the steps of assigning
the zones to the object space (step 100), reading functional
image data (step 101), back-projecting the image data and
generating zonal image objects (step 102), assigning linear
coefficients (zonal emission fractions) to the zones (step 103),
forward projecting each zone separately and generating zonal
projections, i.e., zonal data models, (step 104), calculating a
total projection, i.e., a complete data model, as a linear com-
bination of the zonal projections (step 105), performing a fit
to derive the best linear coefficients (step 106), renormalizing
the zonal emission and the zonal projection by the new linear
coefficient (step 107), and checking for goodness-of-fit of the
reconstruction (step 108). If necessary, one returns to step
102, i.e., the steps 102-108 are repeated until a sufficient
goodness-of-fit as achieved or a maximal number of iterations
is reached. At the end, the reconstructed image is output (step
109).

In the flowchart of FIG. 10, not every step does necessarily
be performed or the order of steps may vary. For example, the
zones are usually only assigned once at the beginning of the
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multimodal reconstruction and the coefficients may be
assigned immediately after assigning the zones.
Smoothed Zonal Reconstruction

Introducing zones enables further smoothing of a zonal
image object (step 104A of FIG. 10). The smoothing opera-
tion is performed zone-specific, as explained generally in
connection with FIG. 17. As an example, pixon smoothing
can be applied in a zone-specific way as explained in connec-
tion with FIG. 18. For pixon smoothing, the flowchart of FIG.
10 can include the additional step of generating (and eventu-
ally updating) zonal pixon maps that provide zone-specific
pixon kernel functions to the pixon smoothing operation.
Mathematical Description of Multimodal Reconstruction

In the following, a mathematical description for specific
algorithmic features is given for multizone multimodal recon-
struction. FIG. 11 shows an overview of a multizone multi-
modal reconstruction algorithm 110 that includes zonal
renormalization operations (steps 112, 112", 112"), an update
operation (step 114), and a recombining operation (step 116).

In functional imaging, image reconstruction estimates a
best value for each object point to resemble the functional
activity density as accurately as possible. The image recon-
struction is based on the measured image data D and a data
model m derived from a reconstructed image object with the
help of a system matrix H and a merit function. The zonal
renormalization operations (steps 112, 112', 112") and the
update operation (step 114) can perform a comparison of the
measured image data D and a data model m and then use the
system matrix H to transform the image object from object
space to a data model in data space.

The algorithm begins with a set of N initial zonal image
objects Ia,miﬁal("), each is having the dimension of the final
reconstructed image object. The initial zonal image objects
| — 1 can be derived from the functional image data by a
first back projection that creates a first estimated image object
and applying zonal information (e.g., multiplying a first esti-
mated image object with zonal functions). Alternatively, the
zonal image objects can be initialized arbitrary; for example,
one can set all initial zonal image objects identically to unity

The renormalization operation (steps 122) generates an
initial (iteration) input object 117 comprising those initial
zonal image objects I, ,,,,4, L for each zone. In addition, the
initial input object 117 comprises an initial scaling factor c,,
for each zone and therefore, fore each initial zonal image
object Ia,miﬁal("). The scaling factors c, constitute a zone-
specific constraint for the reconstruction. In one example, a
scaling factor corresponds to an initial estimate of the fraction
of the signal uptake in its particular zone.

The update operation (step 114) is the repeated step in an
iterative reconstruction loop 118 characterized by an index
iteration that is increased for each new iteration step. For each
iteration, the output of the update operation (step 114) is an
output object 119 of updated output zonal image objects
Ia,omput("). These output zonal image objects Ia,omput(") usu-
ally include a modification for each object point with respect
to the initial zonal image objects I, ., . The update opera-
tion (step 114) does not modify the scaling factor c,,.

The iterative reconstruction loop 118 includes a decision
operation (step 120) that evaluates whether another iteration
step needs to be performed or not.

If another iteration step is performed, then the output object
119 can be used to update the initial scaling factor ¢, by the
renormalization operation (steps 112'), thereby providing an
updated scaling factor ¢',,. Together, the updated scaling fac-
tor ¢',, and the updated zonal output object 1, ..., Sactasa
next input object 121 for the subsequent iteration step.
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If the evaluation determines that the iterative reconstruc-
tion 118 can be ended, the scaling factor ¢', can be updated a
last time to generate scaling factor ¢",,. One can thus perform
a last renormalization operation (steps 112") based on the
zonal image objects Ia,omput(") of'thelast output object 119, or
of any previously determined output object. The output zonal
image objects of the selected last output object and the scaling
factors ¢",, form the final output object 122 from which the
recombining operation (step 116) derives the reconstructed
image object [

Object Space, Data Space, and System Matrix

During the multizone multimodal reconstruction, a zonal
forward projection operation between object space and data
space generates, for example, a data model m of an image
object. Specifically, zonal forward projection operations are
used within the algorithm for evaluating the zonal image
objects or for calculating parameters of the update operation
(step 114).

In image reconstruction, object space and data space are
related to each other through the system matrix H of the
functional imaging system 4. Thus, for any projection opera-
tion, one can use the system matrix H and its transpose H to
transform objects between object space and data space.

In general, a forward projection is an application of the
system matrix H to an object in object space. The result of a
forward projection is a “projected object” in data space. As an
example in nuclear imaging, a forward projection is the linear
operation that transforms the functional activity density into
the total data model m, of predicted detection events

m = Z Hiol,.

a

Here, i stands for the 2D detection positions on the detector
system of the functional imaging system 4, as well as for the
detection time t' and energy E'. In general, the detection time
and energy of a photon does not need not be the same as the
emission time t and energy E. Such cases arise, for example,
in PET with time-of-flight corrections, or when the photon
energy is changed in a scattering event. In many cases, how-
ever, these differences can be ignored, and t'=t and/or E'=E. A
photo peak energy window may then include scattered pho-
tons, whose estimated contributions s, can be estimated sepa-
rately. A data model m, based on a forward projection and
scatter correction then can then be written as

m; = Z Hioly +5;.
a

The system matrix H is rarely applied directly as a matrix
multiplication. Instead, it is represented as a product of opera-
tors H,;:

H-H,® . ®u®n,
Corresponding to the forward projection, the backward
projection from the data space into object space can be

described as an application of the transpose H” of the system
matrix H:

lo = Z Heimy;
i
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The transpose H” is also rarely applied as a matrix multi-
plication. Instead, it is represented as a product of operators:

H-H,7®p™®  @gT

In the multizone multimodal algorithm, one uses forward
and backward projections. One example for a backward pro-
jection that has been mentioned before is the generation of the
first estimated image object for the initial zonal image
objects. Also an ordered-subset-expectation-maximization
(OSEM) algorithm uses a forward projection to generate the
data model, which is then used to derive update factors in data
space. Those update factors are then back projected to gen-
erate an update object in object space that is used to update the
input object. An algorithm based on a non-negative least-
squares (NNLS) algorithm uses a forward projection also to
generate the data model. Backward projections are used when
determining an auxiliary gradient, specifically, when calcu-
lating the preliminary auxiliary gradient and the pre-condi-
tioner object.

Zonal Forward Projection

When reconstructing multiple zones, the input object for a
zonal forward projection operation comprises more than one
zonal input object.

A zonal forward projection is adapted to the multizone
situation and includes a forward operation, applied separately
to each zonal image object of each zone. The zonal forward
projection considers, thereby, the contribution of each zone to
the image model. Specifically, the zonal forward projection
uses the zone-functions z,,"” to represent the zone-specific
contribution. Any stray values that the zonal image object
may have received at object points outside its specific zone
due to the update operation (step 124) are multiplied, e.g., by
zero according to the specific definition of each zone-func-
tion. Thus, based on resulting zonal data models m,

W= Y U U,
a

one can write the total data model m, as a sum of the zonal data
models, plus a scatter estimate

m; = me") +5;.
7

As indicated in the flowchart of FIG. 12, a zonal forward
projection (step 130) considers the zone-functions z,%", the
scattering corrections s,, and the scaling factors c,, when
determining a scaled data model m,*““*?, The scaling factors
¢, include as the zone-specific constraints, e.g., the fractional
contribution of each zone to the final image object. The scal-
ing of the zonal images with the scaling factors c,, transforms
into scaling the zonal data models with the same zone-spe-
cific scaling factor c,,.

Zonal Renormalization

In FIG. 11, the zonal renormalization process (steps 122,
122',122") is applied at multiple positions within the iterative
reconstruction algorithm 110. However, the renormalization
does not need to be performed at every position indicated or
for every iteration step.

As illustrated in FIG. 13, the renormalization can be based
on a calculation and optimization of the merit function (step
135), which usually requires the image data D, the zonal
image objects I,“”, their corresponding scaled data model
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m; , the zone-functions z”(ct), and the respective scaling
factors c,,, which are the parameters to be optimized.

The forward projection operation as described above is the
basis for the calculation of a total scaled data model m,;*****? as
will be described below. The zone-functions z, are derived
by analyzing the support information S. The zonal image
objects I, can be the constant initial zonal image objects or
any updated zonal image objects calculated by the update
operation (step 124).

One optimizes the merit function for the scaling factors c,,,
which in general is a optimization of only few parameters,
i.e., of the N scaling factors c,,. The number N of zones into
which the object space is usually separated is in the range
from 2 to about 50, for example, 3,4, 5, 10, 15, 20, 25, 30. The
output of the zonal renormalization process (step 122, 122,
122") includes an optimized scaling factor ¢',, for each zonal
image objects I_".

The influence of the scaling factors c,, on the data model is
explained below. Scaling of the zonal image objects I, with
the non-negative scaling factors c,,

Yo, 7,20 Vn

leads to corresponding scaling of the zonal data models m,"

m"—c,m V.

scaled

The scaled total data model m; as generated by the zonal
forward projection 130 (including scaling and scattering cor-
rection) is given by modifying the sum in

m; = ngm +5i
"

as follows:
m‘;caled - Z cnmf") +5;
n

During the zonal renormalization operation, the scaling
factors c,, are chosen to minimize a merit function of the data
D given the total data model m,****?, For example, one can
use a modified chi-square-gamma statistic as described in K.
J. Mighell, “Parameter estimation in astronomy with Poisson-
distributed data. I. The Xyz statistic,” Astrophys. J., 1999, 518:
380-393 and K. J. Mighell, “Parameter estimation in
astronomy with Poisson-distributed data. II. The modified
chi-square gamma statistic”, 2000, arXiv:astro-ph/0007328,
the contents of which are herein incorporated by reference.

The chi-square-gamma statistic of Mighell is defined by:

J
) (d; +Minid;, 1} — m;*

Ay = 4+ 1 '
=1

wherein d, and m, are the j-th entries of the measured data set
D and the data model m, respectively. J is the number of data
points in data space, i.e., the number of data points in the data
set D.

Mighell’s modified chi-square-gamma statistic is unbiased
and well behaved for low counts. It also has the advantage that
it is quadratic in the optimization parameters, so setting its
gradient to zero results in linear equations for them, albeit
constrained to non-negative c,,.
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An alternative merit function is the log-likelihood function
£=2) [m} —dLogm)],

but as the log-likelihood function is not well behaved at low
counts, it should be used with caution.

Renormalization of the constant initial objects (with value
1 for all o) retains constant initial zonal images Ia,imﬁal(”) that
vary from zone to zone according to their scaling factors. In
FIG. 11, the zonal image objects I,* and the scaling factors
c, are shown as parts of the input objects 117, 121, and the
output object 122. However, one can similarly provide only
renormalized zone-functions to the iteration loop, e.g. by
substituting 1,9 with ¢,I,%. For the initial zonal image
object one would then set I, *’=c,,. Those scaled zonal image
objects are also updated whenever updated scaling factors are
available.

Performing the combining operation (step 116) on the ini-
tial zonal image object results in an image object I that is
piecewise constant, with intermediate values at zone bound-
aries

&,

Ia:ch

n

Returning to FIGS. 11 and 13, zonal renormalization
operations (step 122', 122") during the iterative reconstruc-
tion operation (step 124) update the scaling factors in view of
improved zonal image objects. Thus, those zonal renormal-
ization operations (step 122', 122") allow the constraints for
the different zones to change from one iteration to the next.
This update of the constraints may reduce or avoid serious
artifacts, which could be generated otherwise. Usually, the
scaling factors do not change much after several iterations.
Iterative Reconstruction

Iterative reconstruction allows the zonal image objects to
vary spatially. The update operation of the reconstruction
proceeds much as in a conventional “unimodal” reconstruc-
tion, except that the scaled total data model m,****? is used
and that zonal renormalization can be performed before zonal
image objects are forward projected.

In maximum-likelihood-expectation-maximization
(MLEM) algorithms such as OSEM reconstructions, the
zonal image objects are updated with each iteration by a
multiplicative update object

Z Higd; /m‘;caled

i

1)

1((;1) a,i
g in
Z Hiq
i

out

obtained by back-projecting the data update factors
d/m,****?_The update objects depends on o. but not on n.
Additionally, MLEM and OSEM are derived from the log-
likelihood function and are also sensitive to projected pixels
with low counts, as mentioned above for the renormalization.
OSEM

FIG. 14 illustrates an iteration loop 140 for OSEM. A
single OSEM update 142 is performed for each subset as
indicated by the evaluation of the number of subsets (step
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144) and an increase of the index subset (step 146). An itera-
tion step of the algorithm is completed when all subsets have
been updated.

The iteration loop 140 further includes the decision opera-
tion (step 120) that evaluates whether another iteration step
needs to be performed. For each new iteration, the algorithm
increments an index iteration (step 128).

If another step needs to be performed, the renormalization
operation (steps 122'), can generate new scaling factors c',
that (as part of the updated output object) are provided to the
next loop over all subsets of the iteration.

If the evaluation determines that the iterative reconstruc-
tion can be ended, the reconstructed image 1 is generated from
the zonal image objects of usually the last output object 122,
with or without another renormalization operation.

FIG. 15 illustrates the details of an update operation 142 for
a subset (indicated by ') of object points. The zonal forward
projection 130 of input zonal image objects I(")a,,m of the
subset of object points generates a scaled data model m,"*“****
for the subset. In data space, a data update factor 150 is
calculated by dividing the image data by the data model (step
152). A backward projection (step 154) of the data update
factor 150 yields an update object 156 in object space, which
is then multiplied with each of the input zonal image objects
I(n),, (step 158) to generate updated zonal image objects
I(0)q 1ipaarea TOT the subset.

Conjugate-Gradient Minimization

In non-negative least squares algorithm, the zonal image
objects are updated with each iteration by an additive update
object. Examples include steepest-decent and conjugate-gra-
dient algorithms.

Referring to FIG. 16, one can use Mighell’s modified chi-
square-gamma statistic Xyz for conjugate-gradient minimiza-
tions (CGM) in, for example, nuclear imaging. Such a statis-
ticis well behaved at low counts. Within a CGM iteration loop
160, schematically shown in FIG. 16, the minimization
operation 162 is performed with respect to an input image
object I, not the zonal image objects Ia,m("). The precondi-
tioner p,, of the CGM update can be defined as

Po = [Z Hio /(d; + 1)]’1.

In unimodal CGM, the image object would be updated in
each iteration step by an additive Al (see, e.g., R. C. Puetter
et al., 2005). In multimodal reconstruction, this update is
applied to each of the zonal image objects Ia,m("), ie. Ia,m(")
is replaced by Ia,m(")AIa.

It is immaterial whether Al is added to I at object
points at which the zone-function z,* vanishes because the
image object is a sum of the products z.,“p_*. However, in
practice one would rarely add the additive Al , for those object
points, thereby preserving the distinction between the zones
that is explicit in the zonal image objects.

Maximum a Posteriori Reconstruction Algorithm

Another class of reconstruction algorithm that can benefit
from the disclosed multimodal reconstruction includes maxi-
mum a posteriori reconstruction algorithms (MAP). As most
of the maximum likelihood algorithms have MAP counter-
part algorithms the above introduction of zones and zonal
image objects is equally applicable for MAP algorithms.

In general, multimodal reconstruction results in images
that differ from those obtained by traditional reconstruction.
As iterative reconstruction converges to a global minimum of
a merit function, there should, in principle, be no difference

10

15

20

40

45

50

55

60

65

18

between an image described by a single object and the same
image described as a sum of more than one zonal image
object. However, as a practical matter, iterative reconstruction
usually is not carried out to convergence, both because con-
vergence may require many iterations, each of which contrib-
utes to an accumulation of round-off errors, and because
image reconstruction is an inherently ill-posed problem, as
defined by Hadamard (see, e.g., J. Hadamard, “Lectures on
Cauchy’s Problem in Linear Partial Differential Equations,”
New Haven: Yale Press. Reprinted 1952. New York: Dover.
1902, 1923). Small noise in the image data can be greatly
magnified by the reconstruction. Such noise can result in
artifacts in the reconstructed image object that dwarf the true
signal.

Inpartbecause of the foregoing difficulties, iterative recon-
struction is therefore typically stopped after a few iterations.
Therefore, it is important how those few iterations are per-
formed. Multimodal reconstruction separates the functional
activity into medically meaningful zones defined by the sup-
porting modality. This separation into zones is left largely
unaltered during the iterative reconstruction.

Zonal Smoothing

In an alternative embodiment, the zonal information can be
used to provide zone-specific (zonal) smoothing. For
example, one can perform smoothing operations to the zonal
image objects during the reconstruction. Exemplary smooth-
ing operations include pixon smoothing, Fourier filtering,
application of a Wiener filter, wavelet filtering, and/or appli-
cation of a fixed filter. For such smoothing operations, the
associated filter functions can be stored in a constraining map,
for example, a pixon map. An overview of different smooth-
ing methods is given in R. C. Puetter et al., “Digital Image
Reconstruction: Deblurring and Denoising,” Annu. Rev.
Astro. Astrophys., 2005, 43:139-194.

As shown generally in FIG. 10, the smoothing 104B can act
on the zonal input object or the selected updated zonal image
object, which is selected to become the reconstructed image I.
The pixon smoothing operation is based on a pixon map P,
which can be specifically determined for each zone.

Pixon Smoothing

Pixon smoothing can be viewed as a way to average values
of an object over a specific volume defined by the pixon
kernel function. The smoothing operation can be written as a
matrix operation using a pixon kernel operator K, such that
the (smoothed) image object I is given by applying the pixon
kernel operator K to a pseudo-image object "

lo= ) Kepll
B

“Pseudo” indicates that the smoothing operation can be
understood as a transformation (using the pixon kernel opera-
tor K) from a (pseudo-) object space, i.e. the pre-pixon
smoothing space, to the object space of the image object 1.
Applying the transpose operator K” of the pixon kernel opera-
tor then projects from the object space back into the pseudo-
object space.

In many cases, the smoothing operation is a convolution
operation given by:

lo= ) Ko plls
B
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Convolutions can be calculated by a direct summation, for
small pixon kernel functions, and by fast Fourier transforms
(FFTs), for large kernel functions. If the kernel function can
be factorized, a product of operators can be applied to sim-
plify the calculation.

Kernel functions, which can be discrete or continuous, are
defined over a volume that surrounds an object point. The
volume can be limited (over one or more object points), it can
extend over one or more zones, or it can extend over the
complete object space. Examples for pixon kernel functions
include a Gaussian functiorzl, an inverted paraboloid, or a
function F(x; B)=(1+px>)"'#", which approximates the Gaus-
sian and parabolic functions for p-values of zero or infinity
respectively, wherein the parameter x can either represent the
radius or depend on the direction.

The shapes of the kernel functions can be symmetric, or
they can be adjusted in response to a form prevailing in the
image object . Within the shape of the pixon kernel functions,
one can weigh the contribution of an object point. A limiting
case of a pixon kernel function is the delta-function, in which
the pixon smoothed object and the unsmoothed object are
identical.

Pixon Map Determination

The pixon method includes a search for the broadest pos-
sible pixon kernel functions at each point in the object space
that collectively support an adequate fit of an object to the
measured data set D. In particular, the pixon map assigns to
each object point a specific pixon kernel function. During a
pixon smoothing operation, the selected pixon kernel func-
tions are obtained from the values of the pixon map P. When
applying the pixon method to data consisting of low numbers
of counts, a statistic is used to statistically evaluate the effect
of smoothing with a pixon kernel function during the deter-
mination of the pixon map P. Thus, such a statistical evalua-
tion is suitable, for example, for image reconstruction of the
functional imaging system 4, for which the data are Poisson
distributed. Employing a statistical evaluation for the pixon
map determination that coincides with a statistic of the data
set D increases the accuracy of the pixon map P.

One constructs the pixon map P by iteratively considering
each of the pixon kernel functions individually. Within each
iteration, one calculates a goodness-of-fit for every object
point of an input object A', and evaluates the extent of the
smoothing caused by the pixon kernel function associated
with that iteration. The goodness-of-fit is based on a statistic
that is well suited for low count data. If the calculated good-
ness-of-fit of an object point fulfills a preset condition, one (or
more) pixon kernel functions are assigned to that object point.
The information about the assigned kernel function(s) is
stored in the pixon map P.

Based on the zonal information, the pixon smoothing can
be performed based on a zonal pixon map providing specific
pixonkernel functions for one or more zones. Additionally, or
alternatively, the entries of the zonal pixon map for pixon
kernel functions for the specific zones can be derived from the
same or from different modalities. For example, smoothing of
a zone of less interest can be smoothed, if at all, based on a
pixon kernel function requiring less computational power,
while a pixon kernel function of the zone of interest provides
shape-specific smoothing of high quality.

For nuclear image reconstruction, pixon smoothing and the
generation of a pixon map P are described in more detail, for
example, in U.S. patent application Ser. No. 11/931,084, filed
Oct. 31, 2007 and entitled “EXTERNAL PIXON FOR
TOMOGRAPHIC IMAGE RECONSTRUCTION TECHNI-
CAL FIELD,” U.S. patent application Ser. No. 11/931,195,
filed Oct. 31, 2007 and entitled “RECONSTRUCTING A
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TOMOGRAPHIC IMAGE,” and U.S. patent application Ser.
No. 11/931,030, filed Oct. 31, 2007 and entitled “DETER-
MINING A PIXON MAP FOR IMAGE RECONSTRUC-
TION,” and in the co-pending U.S. Patent Application
entitled “DETERMINING A MULTIMODAL PIXON MAP
FOR TOMOGRAPHIC-IMAGE RECONSTRUCTION;,” by
A.Yahil and H. Vija, filed on even date herewith. The contents
of all the preceding patent applications are incorporated
herein by reference.

Intrazonal Smoothing

Multimodal reconstruction, as specified so far, separates
the functional activity measured with the nuclear modality
into different zones that were defined by a support modality.
The reconstruction does not control how the functional activ-
ity is distributed within each structural zone. For example, if
a support modality can structurally define potential zones of
biomarker accumulation (e.g., lesions), multimodal recon-
struction can determine in which zone there is functional
activity and how much.

An additional task of functional imaging is to enable the
identification of lesions that are not delineated by the struc-
tural modality. Intrazonal smoothing operations can improve
the reconstruction of intrazonal activity distributions and
thereby support that the above task can be achieved.

Like iterative reconstruction, intrazonal reconstruction
faces an ill-posed problem in which excessive iterations can
build up artifacts due to overfitting of the data. This can occur
when one treats noise as signal. In the absence of information
from another modality, one is forced to constrain, e.g. smooth
or pixon smooth, the image based on statistical criteria
applied to the functional data only. The introduction of a
multiple zones allows constraining the respective zonal
image objects by smoothing operations.

As shown in FIG. 17, a zonal input object I_* is subject to
a zonal smoothing operation (step 170), which uses the sup-
port information (e.g., in the form of zone-functions z_,%”) to
generate smoothed zonal image objects Ia,smooth("). Applica-
tions of the zonal information include smoothing operations
that only act within the zone or that generate a smoothing
parameter based on object points within the respective zones.
However, as zonal image objects are restricted by the zonal
functions during the zonal forward projections, smoothing
can in principal also be performed over the complete object
space as the entries of the object points not-affiliated with the
respective zone are cleared by multiplication with the zone-
function.

The smoothed zonal input objects Ia,smooth(”) are then used
in zonal multimodal reconstruction as described above. For
example, one can combine the zonal smoothing operation
(step 170) with the forward operation 130 of FIG. 12. In
addition, or alternatively, smoothed zonal image objects
Ia,smooth(”) can be recombined into a single image object.

Zonal pixon smoothing (step 180) is illustrated in FIG. 18.
As described above, the pixon method restricts image objects
by adaptively identifying the underlying image structures.

Specifically, the pixon method is based on a pixon map that
determines the non-negative kernel functions K, that are
used to smooth a pseudo object

lo= ) Kepllp.
7

In multimodal reconstruction, image restriction can be
applied separately to each zone or to a selected group of
zones, thereby taking advantage of the image restriction
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already established by the support modality, e.g., in the form
of a structural image. Zonal pixon smoothing includes
smoothing each of the zonal image objects separately accord-
ing to zone-specific kernel functions Kaﬁ(") provided in a
pixon map. A pixon smoothed image object [ can be
calculated as

a,pixon

la pixon = Z L )Igf:;ixona
)

where the pixon smoothed zonal image object Ia,pixon(”) is
determined by the zone-specific kernel functions and the

zone-functions z., ™ according to

el

a,pixon

- E K5 | 3 K.
B

B

The denominator corresponds to a pixon smoothed zone-
function and provides a zone-specific normalization of the
pixon smoothed zonal image object Ia,pixon(”)

A number of embodiments of the invention have been
described. Nevertheless, it will be understood that various
modifications may be made without departing from the spirit
and scope of the invention. For example, multimodal recon-
struction can be applied to a wide variety of reconstruction
processes, including but not limited to ML, NNLS, MAP, and
Bayesian reconstruction algorithms. The zonal information
can be derived from one or more support modality and
complemented by manual input of parameters or zone bor-
ders. Zones can be defined to contain tissue of enhanced
interest. Zones can also be defined to exclude tissue, which
for example accumulates uninteresting signal. In an example,
a bladder is manually excluded.

Regarding zonal smoothing, the order in which the difter-
ent pixon kernel functions are used during the smoothing
operation can be varied, the step size can be varied, or some
pixon kernel functions may be considered only in defined
areas of the image.

The pixon map can associate smoothing operations with,
for example, in the order of ten spherical pixon kernel func-
tions. If one does not want to impose symmetry, one may use
additionally or alternatively elliptical pixon kernel functions.
However, asymmetric pixon kernel functions may increase
the computational effort, which one can handle, for example,
by using specifically designed hardware.

The pixon map can be provided, for example, as a field of
variables defining the pixon kernel functions or as a field of
indices, which indicate kernel functions within the table F of
the pixon kernel functions.

Various combinations of the multimodal reconstruction
and multimodal smoothing described herein can be
employed. Additionally, one may apply one or more opera-
tions between the smoothing operation and the projection if it
seems appropriate. For example, one can store the
unsmoothed object for a later evaluation. Moreover, one can
use more than one type of smoothing operation to constrain
the reconstruction.

The pixon smoothing operation may be the calculation of
anaverage of the values of the object points within the volume
defined by the corresponding pixon kernel function. The
pixon smoothing within the reconstruction can be applied

10

15

20

25

30

35

40

45

50

55

60

65

22

multiple times until the quality of a corresponding data model
fulfills a stop-criterion characterizing the goodness-of-fitof'a
current data model.

The updated objects provided as image object may be the
most recently updated object. Alternatively, it may be deter-
mined based on quality evaluation criteria. Instead of being
supplied to a renderer for visualization, the output object can
be supplied to a record keeping system (e.g., PACS system) or
a system for automatic quantitative diagnosing.

The source of the functional signal may be an object or
patient positioned within the detecting area of the functional
imaging system.

It is to be further understood that, because some of the
constituent system components and method steps depicted in
the accompanying figures can be implemented in software,
the actual connections between the systems components (or
the process steps) may differ depending upon the manner in
which the disclosed method is programmed. Given the teach-
ings provided herein, one of ordinary skill in the related art
will be able to contemplate these and similar implementations
or configurations of the disclosed system and method.

For example, the numerical and symbolic steps described
herein can be converted into a digital program executed, e.g.,
on a digital signal processor according to methods well
known in the art. The digital program can be stored on a
computer readable medium such as a hard disk and can be
executable by a computer processor. Alternatively, the appro-
priate steps can be converted into a digital program that is
hardwired into dedicated electronic circuits within the com-
pressor that executes the steps. Methods for generating such
dedicated electronic circuits based on a given numerical or
symbolic analysis procedure are also well known in the art.

Accordingly, other embodiments are within the scope of
the following claims.

What is claimed is:

1. A computer-implemented method of reconstructing an
image object for a measured object in object space from
image data in data space, the method comprising causing a
computer system to execute instructions for:

providing zonal information separating the object space

into at least two zones, wherein the zonal information is
derived from a first imaging modality;

providing at least two zonal image objects, each zonal

image object being associated with one of the at least
two zones;

performing a zonal smoothing operation on at least one of

the zonal image objects, thereby generating at least one
smoothed zonal image object;

reconstructing the image object on the basis of the at least

one smoothed zonal image object, wherein the recon-
structed image object comprises an image from a second
imaging modality; and

outputting the image object.

2. The method of claim 1, wherein the zonal smoothing
operation is selected from the group consisting of a smooth-
ing operation based on pixon smoothing, a smoothing opera-
tion based on Fourier filtering, a smoothing operation based
on wavelet filtering, a smoothing operation based on filtering
with a Wiener filter, and a smoothing operation based on
filtering with a fixed filter.

3. The method of claim 1, wherein performing the zonal
smoothing operation includes providing a zonal smoothing
map of zone-specific information about the smoothing within
a zone.

4. The method of claim 3, wherein performing the zonal
smoothing operation further includes generating the zonal
smoothing map using the zonal information.
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5. The method of claim 3, wherein the zonal smoothing
map is a pixon map providing zone-specific pixon kernel
functions Kaﬁ(").

6. The method of claim 1, wherein performing the zonal
smoothing includes pixon smoothing each of the zonal image
objects separately using zone-specific kernel functions
K.

‘; The method of claim 6, wherein pixon smoothing
includes calculating a smoothed image object for a zone n
according to

o pixon = Z & )Igfg;ixona
0

where the pixon smoothed zonal image object I, ,pl.ston(") is
determined by the zone-specific kernel functions Kaﬁ(") and
the zone-functions 7, according to

1Eson = E kG | 3 K.
B
B

8. The method of claim 1, wherein providing zonal infor-
mation includes receiving support information about the
measured object, and deriving the zonal information from the
support information.

9. The method of claim 8, wherein the support information
comprises at least one of a computer tomography image and
a nuclear magnetic resonance image of the measured object.

10. The method of claim 1, wherein, to provide a spatio-
temporal area within the object space, providing the zonal
information includes grouping object points of the object
space into at least two zones based on at least one of a
common anatomical feature, a common application specific
feature, a common disease specific feature, and a common
biomarker specific feature of the object points.

11. The method of claim 1, wherein providing the zonal
information includes determining a zone-function relating
object points of the object space to a zone.

12. The method of claim 11, wherein values of the zone-
function correspond to an extent of an affiliation with the
zone.

13. The method of claim 1, wherein a zone is defined based
on values of an attenuation map derived from a computer
tomographic image of the examined object.

14. The method of claim 1, wherein the method further
comprises causing the computer system to execute instruc-
tions for performing a reconstruction of the image object
based on the smoothed zonal image object.

15. The method of claim 14, wherein performing the recon-
struction includes for each iteration, in a series of iterations,

performing a forward projection of the at least one

smoothed zonal image object, thereby generating at
least one zonal data model in data space;

determining a data model using the at least one zonal data

model as a contribution of the respective zones to the
data model;

determining an update object in object space using the data

model and the image data;

updating the at least one smoothed zonal image object with

the update object, thereby generating at least one
updated zonal image object; and
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following a last iteration, determining the image object
from the at least one updated zonal image object of one
of the iterations.

16. The method of claim 15, wherein performing the for-
ward projection generates contributions to the data model
from the at least one zonal image object only for those object
points that are affiliated with the respective zone.

17. The method of claim 14, wherein performing the recon-
struction includes assigning a scaling factor to each zone, and
optimizing the scaling factor during the reconstruction.

18. The method of claim 14, wherein performing the recon-
struction includes deriving zonal scaling factors from a renor-
malization operation.

19. The method of claim 14, wherein performing the recon-
struction includes an update operation [-] based on an algo-
rithm selected from the group consisting of a maximum-
likelihood expectation-maximization algorithm, an ordered-
subset expectation-maximization algorithm, a non-negative
least-squares algorithm, and a conjugate-gradient minimiza-
tion algorithm, a maximum a posteriori reconstruction algo-
rithm, and a Bayesian reconstruction algorithm.

20. A computer-implemented method for multimodal
imaging of an examined object, the method comprising caus-
ing a computer system to execute instructions for:

performing a support imaging operation to generate sup-
port information associated with the examined object;

identifying at least two zones in object space based on the
support information, wherein the at least two zones are
derived from a first imaging modality;

performing functional imaging of the examined object,
thereby generating functional image data;

reconstructing an image object from the functional image
data, wherein reconstructing includes performing a
zonal smoothing operation within at least one of the two
zones, wherein the reconstructed image object com-
prises an image from a second imaging modality; and

outputting the reconstructed image object.
21. The method of claim 20, wherein the zonal smoothing
operation is selected from the group consisting of a smooth-
ing operation based on pixon smoothing, a smoothing opera-
tion based on Fourier filtering, a smoothing operation based
on wavelet filtering, a smoothing operation based on filtering
with a Wiener filter, and a smoothing operation based on
filtering with a fixed filter.
22. A functional imaging device comprising:
a detector unit for detecting a functional signal emitted
from a measured object within a detecting area and
providing functional image data in a data space indica-
tive of the functional signal; and
a reconstruction unit for reconstructing, from the func-
tional image data, an image object in object space, the
reconstructing unit being configured to
provide zonal information separating the object space
into at least two zones;

provide at least two zonal image objects, each zonal
image object being associated with one of the at least
two zones, wherein the at least two zones are derived
from a first imaging modality;

perform a zonal smoothing operation on at least one of
the zonal image objects, thereby generating at least
one smoothed zonal image object;

reconstruct the image object on the basis of the at least
one smoothed zonal image object, wherein the recon-
structed image object comprises an image from a
second imaging modality; and

provide the image object at an output of the reconstruc-
tion unit.
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23. The functional imaging device of claim 22, further
comprising;
an input device to receive input from a user;
adisplay device to display, to the user, support information
received from a support modality; 5

wherein the reconstruction unit is configured to derive the
zonal information from the support information and the
input from the user.

24. The functional imaging device of claim 22, further
comprising a support imaging device for deriving support 10
information about the measured object, and wherein the
reconstruction unit is further configured to receive the support
information from the support imaging device.
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